
The 19th International Modal Analysis Conference, Orlando, FL, USA, February 5-8, 2001. 

 
 

MODAL PARAMETER EXTRACTION OF Z24 BRIDGE DATA 
 
 
 

Darby J. Luscher1, James M. W. Brownjohn2, Hoon Sohn3, and Charles R. Farrar3 

 
 

1. Department of Civil Engineering, 205 Cobleigh Hall 
Montana State University, Bozeman, MT 59717 

2. School of Civil and Structural Engineering, Nanyang Technological University 
Blk N1, 50, Nanyang Avenue, Singapore 639798 

3. Engineering Sciences & Applications Division, Engineering Analysis Group, M/S C926 
Los Alamos National Laboratory, Los Alamos, NM 87545 

 
1. ABSTRACT 
 
The vibration data obtained from ambient, drop-weight, and 
shaker excitation tests of the Z24 Bridge in Switzerland are 
analyzed to extract modal parameters such as natural 
frequencies, damping ratios, and mode shapes.  System 
identification techniques including Frequency Domain 
Decomposition and Eigensystem Realization Algorithm are 
employed for the extraction of modal parameters and the 
stationarity of the bridge’s dynamic response is also 
investigated using time-frequency analysis.   
 
2. INTRODUCTION 
 
A large assortment of system identification techniques is 
available for systems with measurable inputs and output 
responses. However, for conventional civil structures, the 
introduction of external input forces, and the measurement 
of those inputs become difficult. Thus, there is some desire 
to find system characterization techniques that can be 
applied effectively to the measured responses of ambient 
environmental conditions. Additionally, it would be 
beneficial if the selected techniques minimize user 
interaction in order to reduce variability in results.  
 
This paper presents two system identification techniques 
for extracting modal parameters: Frequency Domain 
Decomposition (FDD) and Eigensystem Realization 
Algorithm (ERA). A comparison is made between the 
results when the methods are applied to separate sets of 
data from ambient, drop-weight, and shaker excitation 
testing of the Z24 Bridge in Switzerland. Also, the condition 
of system stationarity, which is assumed in most modal 
extraction techniques, is investigated using a time-
frequency domain analysis. 
 
3. DESCRIPTION OF THE Z24 BRIDGE TEST 
 
The Z24 is a slightly skewed three-span concrete bridge.  
Each span consists of a continuous post-tensioned two-
box girder supported by concrete piers at each end.  The 
center span is approximately 30 meters in length while 
each end span is 14 meters. 
 
Vibration testing of the Z24 Bridge consisted of measuring 
its time-history response to ambient as well as forced input 
environmental conditions with force-balanced 

accelerometers.  To obtain a high resolution of modal 
information, a fine mesh density of accelerometers was 
desired.  At the time of testing, an excessively large 
number of accelerometers were not feasible.  To maintain 
a significant mesh density and still allow adequate 
recovery of modal parameters, a roving sensor acquisition 
methodology was adopted.  Testing was carried out in two 
separate series of nine setups.  The first series of testing 
was performed under forced-vibration conditions.  At each 
setup, the roving accelerometers were installed at new 
locations along the length of the bridge and shakers 
generated random signals in the frequency range of 3-30 
Hz. The response at each sensor was measured.  
Although the input was measured simultaneously with the 
response, these data are neglected in the following 
analyses.  After recording time-history response from 
shaker input, a drop-weight input was introduced to the 
system.  Time-history response from the drop-weight input 
was recorded separately from the shaker excitation data.  
After repeating this procedure at each setup, the series of 
setups was iterated through again to record ambient 
vibration response of the bridge.  
 
4. INVESTIGATION OF SYSTEM STATIONARITY 
 
System identification techniques, ERA and FDD, presented 
later rely upon the assumption that the system is stationary 
with respect to time. First, the validity of this stationarity 
assumption is investigated by a spectrogram analysis.  
 
Spectrogram computes the time-dependent Fourier 
transform of a signal using a sliding window. This form of 
Fourier transform is also known as the short-time Fourier 
transform. Time histories from the first and last 
instrumentation setups at a reference DOF is concatenated 
in series. Then, the spectrogram splits the concatenated 
signal into overlapping segments and applies time window 
such as a Hanning window to each segment. Next, the 
spectrogram procedure computes the discrete-time Fourier 
transform of each segment to produce an estimate of the 
short-term frequency content of the signal over the given 
time period. Note that for a signal from a time invariant 
system, the frequency content should not change with 
respect to time axis. For the ambient and shaker excitation 
data, the segments consist of 1024 points, while the drop-
weight data segments contain 256 points.  
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Figures 1, 2, and 3 show the plotted spectrograms for 
shaker, ambient, and drop-weight data, respectively. For a 
linear time-invariant system a spectrogram consists of a 
horizontal band located at each natural frequency with 
thickness proportional to the damping associated with that 
mode. Vertical lines are indicative of energy transfer 
between modes or non-stationarity of the system with 
respect to time. Figure 1 shows relatively uniform 
horizontal bands of energy for the shaker data. There is no 
obvious discontinuity in the spectrogram at the 
concatenation point (time = 655 sec). 
 

 
Figure 1: Spectrogram of the shaker test. 

 

 
Figure 2: Spectrogram of the drop-weight test. 

 

 
Figure 3: Spectrogram of the ambient test. 

 
On the other hand, the spectrograms of shaker and 
ambient excitation data show a significant transfer of 
energy between modes and an obvious discontinuity at the 
concatenation point (see Figures 2 and 3). The vertical 
marks on Figure 2 represent the excitation input. Because 
the excitation is of a much higher energy than the 
subsequent free decaying motion, the spectrogram 
magnitude is dominated by the spectral content of the 
input. It is speculated that variations in normal traffic over 

the bridge mainly attributes to the nonstationarity of the 
ambient test.  
 
The observed non-stationarity would affect the subsequent 
analyses. It is likely that an analysis of a non-stationary 
system would overestimate the damping while a solution 
for natural frequency may represent a weighted-average 
value. To be worse, the phase information of mode shapes 
would be distorted resulting in unreliable mode shapes. 
 
5. ANALYSIS OF Z24 DATA 
 
For the modal parameter extraction of the Z24 Bridge data, 
FDD and ERA methods are employed. The detailed 
descriptions of the FDD and ERA methods can be found in 
Anderson, 2000 and Juang, 1994.  
 
5.1 Frequency Domain Decomposition (FDD) 
 
The frequency domain decomposition (FDD) technique is 
based upon the Fourier transform of the time-history into 
the frequency domain.  It is similar to the classical peak-
picking method of finding maxima in the power spectral 
density matrix (PSD) to locate natural frequencies and 
utilizing the shape of the PSD near natural frequencies to 
estimate damping ratios. 
 
In the FDD technique applied here, the spectral matrix is 
formed from the time-history response data by applying a 
discrete Fourier transform.  The spectral matrix is then 
decomposed by Singular Value Decomposition at each 
frequency point.  Frequency locations of maxima in the 
first-singular value are estimated as the natural 
frequencies and the damping estimated using the half-
power bandwidth method applied to the singular value 
versus frequency plot.  At identified natural frequencies the 
mode shapes are estimated from the singular vectors. 
 
Because the data acquisition is conducted nine times by 
moving measurement points while maintaining a common 
reference point, additional efforts are required to extract 
modal parameters. It should be noted that for all of the 
following analyses any input data was disregarded. Two 
different approaches were employed in this study: In the 
first approach, which is called FDD1 hereafter, the FDD 
technique was performed separately on each set of data. 
Mode shapes in each setup were normalized with respect 
to a common reference point. The global mode shapes 
were then obtained by concatenating the recovered mode 
shapes from each setup. The averages of natural 
frequencies and damping ratios from each setup are 
reported here.  
 
Table 1 shows the averaged natural frequency and 
damping ratio for each mode as determined from each 
type excitation. The natural frequencies from different 
excitations match reasonably well. However, note that the 
fourth (second-torsion) mode was not recovered from the 
drop-weight or shaker excitation. This result is attributed to 
the biased geometry of the inputs. Ambient vibration 
excited each of the lower modes relatively equally. While 
the ambient test could not excite the higher modes well 
enough to recover reasonable mode shapes or damping 
values, the ambient test enabled recovery of the fourth 
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mode, which was not initially recovered from the shaker or 
drop-weight data. MAC values between modes recovered 
from different forcing conditions are presented in Table 2. 
 

Table 1: Modal parameters obtained by FDD1 method 
Shaker Drop Ambient 

Mode f  ζ  f  ζ  f  ζ  
1 3.84 0.93 3.85 1.20 3.85 0.80 
2 4.80 2.34 4.73 5.84 4.89 1.52 
3 9.69 2.80 9.77 1.92 9.82 1.83 
4 N/A N/A N/A N/A 10.30 1.74 
5 12.49 5.07 13.04 7.00 12.70 6.05 
6 19.59 5.00 18.99 3.66 N/A N/A 
7 26.75 5.13 N/A N/A N/A N/A 

 
Table 2: MAC values for mode shapes obtained from three 
different excitation types by FDD1 method 

MAC(i, i)* 
Test type 1 2 3 4 5 

Shaker vs. Ambient 0.99 0.97 0.89 N/A 0.00 
Shaker vs. Drop 0.99 0.47 0.94 N/A 0.02 
Drop vs. Ambient 1.00  0.58 0.97 N/A 0.78 
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Next, a second variation of the FDD method (FDD2) was 
applied to the same Z24 Bridge data. In this case, data 
from the nine separate setups were treated as though they 
were realized simultaneously. That is, the time series from 
all nine setups were combined together, and the singular 
value decomposition (SVD) was conducted on the 
combined data set. FDD was applied only to recover 
natural modes and damping values. Mode shapes could 
not be directly recovered using this approach because of 
the loss of phase information after combining data from 
multiple setups.  
 
To obtain mode shapes, the SVD was repeated on data 
from each setup separately at the previously estimated 
natural frequency values by FDD2. Similar to FDD1, mode 
shapes from each setup were then normalized to the 
reference point, and concatenated together. This 
alternative method shows only marginal improvement. 
Results for the natural frequencies and damping ratios 
estimated from FDD1 are presented in Table 3, and the 
corresponding MAC values are shown in Table 4.  
 

Table 3: Modal parameters obtained by FDD2 method 
Shaker Drop Ambient 

Mode f  ζ  f  ζ  f  ζ  
1 3.85 1.08 3.85 0.96 3.85 1.02 
2 4.81 2.19 4.80 2.76 4.89 1.72 
3 9.72 2.13 9.73 1.79 9.74 1.43 
4 N/A N/A N/A N/A 10.27 1.70 
5 12.62 5.60 13.05 5.24 13.25 5.86 
6 19.56 4.67 19.19 3.15 20.25 7.40 
7 26.65 5.15 N/A N/A N/A N/A 

 
Table 4: MAC values for mode shapes obtained from three 
different excitation types and FDD2 

Test type MAC(i, i)* 

 1 2 3 4 5 
Shaker vs. Ambient 1.00 0.96 0.86 N/A 0.03 

Shaker vs. Drop 0.99 0.45 0.92 N/A 0.02 
Drop vs. Ambient 1.00 0.54 0.96 N/A 0.86 

 
A subsequent attempt was made to recover the fourth 
mode from drop-weight and shaker data. The orthogonality 
condition of mode shapes was used to find the fourth 
natural frequency. Because the fourth mode should be, in 
theory, orthogonal to the third mode, the MAC value 
between two perfectly orthogonal modes should equal 
zero. Therefore, the fourth mode could be located by 
plotting the minimum of MAC(3,j) for different frequency 
values. Also, the natural frequencies were searched such 
that the MAC values between the mode shapes, which 
were obtained from different excitation types, are 
maximized. Frequencies that optimized the correlation 
between modes of separate data sets and the MAC values 
corresponding to these operational deflection shapes are 
listed in Tables 5 and 6, respectively. Because the 
correlation efforts had little effect on modal parameters 
recovered from the drop-weight data, the MAC values for 
modes recovered from those data are omitted.  
 
For the drop-weight data, no real improvement was gained 
in the correlation of mode shapes recovered from the other 
two data sets. The mode shapes from ambient and shaker-
excitation data realized a significant improvement in the 
correlation between the third, fourth, and fifth mode 
shapes. The frequency values changed only slightly for a 
significant change in the correlation of mode shapes. This 
investigation does not strengthen the confidence in the 
results from previous analyses, but does lend some insight 
to the sensitivity of experimental modal analysis upon 
stationarity and stabilization of natural frequencies. The 
operating deflection shapes for the frequencies listed in 
Table 5 obtained from the shaker data are plotted in Figure 
1. A reasonable representation of the first seven mode 
shapes is obtained.  
 

Table 5: Frequencies that maximized the correlation 
between different excitation types 
Shaker Drop Ambient Mode 

f  f  f  
1 3.85 3.85 3.85 
2 4.81 4.80 4.85 
3 9.73 9.73 9.73 
4 10.10 N/A 10.23 
5 12.61 13.05 12.36 
6 19.56 19.19 N/A 
7 26.56 N/A N/A 

Table 6: MAC values for the operating deflection shapes 
obtained at the frequency identified in Table 5 

MAC values from Shaker vs. Ambient 
Mode 1 2 3 4 5 

1 1.00 0.01 0.00 0.01 0.00 
2 0.00 0.98 0.00 0.00 0.00 
3 0.01 0.00 0.90 0.02 0.00 
4 0.00 0.00 0.12 0.88 0.00 
5 0.00 0.00 0.01 0.02 0.97 
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(a) The first mode shape 

 

 

  
(b) The second mode shape 

 

 

 
(c) The third mode shape 

 
 
 
 
 
 

 

 
(d) The fourth mode shape 
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(e) The fifth mode shape 

 

 

 
(f) The sixth mode shape 

 

 

 
(g) The seventh mode shape 

 
Figure 1: Mode shapes obtained from the shaker excitation data 

 
 

 
5.2 Eigensystem Realization Algorithm (ERA) 
 
The Eigensystem Realization Algorithm is an analysis of 
system parameters based on the relationship of the Hankel 
matrix of Markov parameters to the state-space matrices 
that define the system.  Markov parameters are determined 
by inverse Fourier transform of the cross-power spectral 
matrix estimated from the time-history data.  The hankel 
matrix is constructed from the Markov parameters at k = 1 
and k = 0.  The hankel matrix is then decomposed and the 
state-space matrices are estimated.  From the hankel- and 
state-space matrices, the modal characteristics are 
recovered. 
 
For all the excitation cases analyzed for the Z24 Bridge, 
the ERA analysis is conducted without the input record. 
That is, the analysis is performed by ignoring the input data 
from the shaker tests.  
 
The power-spectral densities of the response data from 
each setup were mapped together for estimation of the 
Markov parameters and the subsequent Hankel matrix 

construction.  Note that for the shaker-excitation data, the 
input channels were disregarded for the analysis.   
 
There are three indicators developed for use with the ERA 
(Pappa, 1992): Extended Mode Amplitude Coherence 
(EMAC), Modal Phase Collinearity (MPC), and Consistent 
Mode Indicator (CMI), which is the product of EMCA and 
MPC. EMAC is a measure of how accurately a particular 
mode projects forward onto the impulse response data. 
MPC is a measure of how collinear the phase of the 
components of a particular complex mode are. If the 
phases are perfectly in phase or out of phase with each 
other, this mode exactly has proportional damping and can 
be completely represented by the corresponding real mode 
shape. That is, EMAC is a temporal quality measure and 
MPC is a spatial quality measure. Modes identified by the 
ERA method are only retained if the EMAC, MPC, and CMI 
values greater than 0.7, 0.7, and 0.5 respectively. An 
attempt is made to visually confirm the mode shapes 
estimated by the ERA method.  
 
Results for frequency and damping of recovered modes 
are shown in Table 5. Frequencies and damping values 
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from the ERA analysis have a higher variance among the 
nine data sets than those from the FDD technique. For 
ERA, the order of the Hankel matrix, which is a collection 
of impulse response functions at different time points, 
significantly affects the results. Storage of the Hankel 
matrix is a critical issue in the analyses presented here 
because the assembly of a large Hankel matrix was 
required. Due to a large number of sensors and a limited 
amount of computational storage, the order of the Hankel 
matrix was never large enough to stabilize the results. 
Therefore, it is speculated that the frequencies and 
damping values obtained are merely rough estimates of 
the actual system parameters. Mode shapes are visually 
similar to each other for the different data types, but MAC 
values are poor. Therefore, the MAC values for the mode 
shapes from ERA analysis are not reported in this paper. 

 
Table 5: Frequencies and damping ratios identified by ERA 

Shaker Drop Ambient 
Mode f  ζ  f  ζ  f  ζ  

1 3.85 1.07 3.97 1.37 3.86 1.03 
2 4.98 8.41 4.87 2.67 4.91 3.21 
3 9.82 0.96 9.87 1.73 9.80 1.85 
4 10.42 1.69 N/A N/A N/A N/A 
5 12.62 3.74 12.69 11.26 12.37 2.37 
6 19.64 5.08 19.35 2.61 19.41 2.23 

6. CONCLUSIONS 
 
The vibration data obtained from ambient, drop-weight, and 
shaker excitation tests of the Z24 Bridge in Switzerland 
were analyzed to extract modal parameters such as natural 
frequencies, damping ratios, and mode shapes. 
 
The spectrogram analysis reveals the significant 
nonstationarity for the data obtained from the drop-weight 
and ambient tests. It is believed that the quality of the 
identified modal parameters is degraded as a result of this 
nonstationarity. The forced-vibration analyses using the 
shaker and drop-weight tests have missed the second 
torsional mode.  It is speculated the placement of the 
shaker or drop-weight has prevented direct excitation of 

the second torsional mode. On the other hand, the ambient 
excitation proved to be effective at exciting lower frequency 
modes.  
 
The dynamic characteristics of the Z24 Bridge are 
identified through FDD and ERA techniques. An advantage 
of the ERA method is that it could be easily adapted to an 
automated structural characterization method minimizing 
the modal parameter variability caused by user interaction. 
The FDD technique more accurately estimates the modal 
parameters of the Z24 Bridge than the ERA method. 
However, the poor performance of ERA could be attributed 
to the limited storage capacity, which prevent the assembly 
of a large Hankel matrix, not an explicit deficiency in ERA.  
For either of these techniques, system stationarity should 
be given a consideration. To place confidence in results an 
attempt should be made to minimize conditions that result 
in non-stationarity.  
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